SEARCH
— 葡萄酒 | 威士忌 | 白兰地 | 啤酒 —
— 葡萄酒 | 威士忌 | 白兰地 | 啤酒 —
We live in an era of data explosion, where Industrial IoT (IIoT) plays a crucial role. From smart factories to smart cities, IIoT is transforming our production and lifestyle at an astonishing speed. This transformation is driven by innovations in data acquisition and transmission technologies, with serial communication evolving from RS-232 to RS-485/422, and transitioning to more advanced wireless communication technologies.
RS-232, a simple serial communication standard, was widely used for connecting various industrial devices. However, its short transmission distance and weak anti-interference capabilities gradually became insufficient for increasingly complex industrial environments.
RS-485/422, with their differential transmission and multi-point networking advantages, quickly became the mainstream communication methods in industrial control. They offered longer distances, better noise immunity, and support for multiple devices on a single bus.
RS-232: The Early Pioneer
With the rise of Industry 4.0 , demands for higher data transmission rates, real-time performance, and reliability have surged. Even RS-485/422 began to struggle. This is where wireless communication technologies, especially 5G, Wi-Fi, and Bluetooth, offer new opportunities for IIoT.
Imagine a smart factory where thousands of sensors collect data in real-time via wireless networks and transmit it to the cloud for analysis. Managers can monitor production line status anytime, anywhere, and optimize operations based on data analysis. This enhances efficiency, reduces costs, and improves product quality.
Wireless technologies are not without flaws. Security, stability, and interoperability among different wireless technologies remain challenges. Therefore, selecting appropriate communication technologies and designing optimized systems based on specific scenarios is crucial.
Traditional sensors could only measure simple physical quantities like temperature and pressure. Modern smart sensors, equipped with microprocessors and memory, can process, analyze, and make decisions locally, then upload processed data to the cloud via wireless networks.
With advancements in AI, edge computing, and other technologies, IIoT will see broader development. We will witness smarter sensors, more powerful data analysis, more flexible network architectures, and richer application scenarios.
IIoT faces challenges like data security, privacy protection, standardization, and talent development. Addressing these issues collectively will unlock IIoT’s full potential, making it a powerful engine for societal progress.
What is LTE? It's the unsung hero of our digital age, the invisible force that keeps us connected at lightning speeds. Like a well-oiled machine, LTE works tirelessly behind the scenes to ensure our smartphones, tablets, and other devices can stre...
View detailsThe buzz around 5G has been overwhelming, with massive promotion and construction efforts. However, the reality is that high package costs and conflicts between urban planning and 5G base station construction have slowed progress.
View detailsNetwork failures have become more complex nowadays! If a computer terminal in the office cannot access the internet, can we simply conclude that the issue lies with the computer's network cable?
View detailsToday, we'll delve into the ins and outs of switches, from basic concepts to advanced applications, providing you with the most comprehensive guide available. We'll cover everything from the fundamental concepts of switches to their working proces...
View detailsMo